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SUMMARY
;L:;Bé;b

An analytical evaluation is made of the capabilities of balloon wind sensors
to respond to detailed variations in the wind structure of the atmosphere, which
can represent lmportant load lnputs for flexible launch vehicles. Both rising
and falling spherical balloons are considered. It is found that for a balloon
of given welght there 1s an optimum diameter for which the balloon response
velocity is most sensitive to variations in the profile of horizontal winds.

When the diameter of the balloon is larger than this optimum value the advantages
of reducing the balloon weight to improve its dynamic response become relatively
insignificant. The apparent mass of ambient alir surrounding the balloon, which
has often been neglected 1n previous investigations, is found to be of consider-
able importance at lower altitudes where launch vehicles often encounter maximum
aerodynamic loads.

An approximate "desmoothing" procedure is developed which, under certain
conditions, can be used to correct measured wind profiles for smoothing errors
associated with inertia of the balloon wind sensor. Finally, an assessment is
made of the reduction in the calculated elastic mode response of launch vehicles
that results when the fine-grain structure of a wind input is smoothed by balloon
inertia. These errors are evaluated for continuous random and triangular-shaped

discrete gust inputs. /Q 0740 2.
INTRODUCTION

Launch vehicles must survive a variety of load inputs during flight through
the lower atmosphere. One of the most important of these inputs is the load due
to wind velocities normal to the flight path of the vehicle.

By far the most abundant collection of wind-profile dats upon which load
estimates can be based has been obtained with the conventional AN/GMD-1 rawinsonde
balloon sounding system. On the basis of a large sample of such data, various
wind design criteria have been formulated, such as those given in references 1
to 4. Unfortunately, because of basic limitations in the GMD-1 wind measuring



system, these data give only a partial description of the actual wind environ-
ment. The detailed or fine-grain structure of the measured wind profile is to
a large extent averaged out, both by inertia of the balloon and by the data-
reduction procedures used to minimize the effects of random tracking errors.

Since the wind velocity fluctuations which are undetected by the conven-
tional wind-measurement systems can represent a significant input to the elastic
modes of a launch vehicle, considerable emphasis has been placed on the develop-
ment of refined wind-sounding techniques. One such technique is the smoke-trail
method described in reference 5. The method consists of measuring, by photo-
graphic triangulation, the horizontal wind velocities from a trail of smoke
generated by a sounding rocket or launch vehicle. Another improved wind-sounding
technique has been developed by the USAF Cambridge Research Laboratories (ref. 6)
and the George C. Marshall Space Flight Center (ref. 7). This method involves
tracking the ascent of a pressurized lightweight Mylar sphere with high-precision
FPS-16 radar.

An indication of the importance of the fine-grain structure of wind profiles
in the dynamic response of an elastic vehicle is given in references 5 and 8.
These reports show comparisons of the responses calculated for the Scout vehicle
by using as inputs a smoke-trail-measured wind profile and a simulated balloon-
smoothing of the same profile. As might be expected, it was found that the
dynamic bending-moment response determined for the detailed wind profile was
significantly greater than that determined for the smoothed profile. These
results represent two extreme conditions ranging from a highly detailed descrip-
tion of the wind input on the one hand to a grossly smoothed input on the other.

The following question might then be considered: If the elastic-mode
response of a vertically rising launch vehicle is to be predicted on the basis
of a balloon-measured wind profile, what mass, size, and terminal velocity should
the balloon have in order to indicate sufficient details in the profile? Exam-
ination of this question represents the primary objective of the present paper.
Specifically, the paper attempts to relate the wind-following capabilities of a
rising or falling sphere to the dynamic aeroelastic response characteristics of
a launch vehicle assumed to fly through the measured profile. Primary attention
is given to the critical altitude interval wherein launch vehicles generally
encounter maximum aerodynamic loads (20,000 to 45,000 feet).

Wind-measurement errors associated with the tracking system, data reduction
procedures, and unsteady wake-induced motions of the balloon are not considered
in the present treatment. The latter source of error was recently investigated
by the NASA Langley Research Center and the U.S. Army Signal Corps in a large bal-
loon hangar at the Lakehurst Naval Air Station. These studies showed that even
under still air conditions spherical balloons follow an erratic path during
ascent. The observed motion was characterized by horizontal fluctuation of the
balloon trajectory about a mean vertical path. Wavelengths of the fluctuations
were typically 10 to 20 balloon diameters; peak horizontal velocities were of
the same order of magnitude as the ascent rate. Studies aimed at eliminating
these wake-induced motions, by such methods as altering the balloon's surface
features, are in progress. The present analysis treats one of the limitations on
the accuracy of balloon-measured wind profiles, namely inertia effects. Other
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factors, such as those previously mentioned will generally limit this accuracy
still further, especially for the shorter wavelengths, but these effects are out-
side the scope of this report.

SYMBOLS
an nth elastic-mode deflection of vehicle at reference station
ast static deflection
b altitude increment of triangular gust
Cp drag coefficient
D diameter of sphere

Dy, Dy drag in y- and z-direction, respectively

Fg buoyant force

g gravitational acceleration

Hy frequency response of wind sensor

Hy frequency response of vehicle

Kn parameter defined by equation (26)

L balloon lag distance

1 running-average length

Mn generalized mass of mode n

m structural mass of balloon or running mass of launch vehicle
mg apparent mass of ambient air associated with balloon
me effective mass of balloon

ng mass of gas contained within balloon

P generalized force per unit horizontal velocity

P aerodynamic load distribution along vehicle length

s Laplace operator

t time



vertical velocity of launch vehicle

horizontal component of balloon velocity

horizontal component of wind velocity

wind profile smoothed by & running-average operation
peak velocity of triangular-shaped gust

weight of balloon

vertical component of balloon velocity

terminal velocity of balloon

distance along vehicle

horizontal and vertical position coordinates

equivalent viscous damping relative to critical damping for mode n
wind shear

Mg,

mass-ratio parameter, ———
mg + M
mass density of air

density of gas contained in balloon

power spectral density

normalized shape of mode n
space frequency associated with mode n, wn/VZ

natural frequency of mode n

Dots over symbols indicate differentiation with respect to t; primes indi-
cate differentiation with respect to z.

DYNAMIC RESPONSE OF BALLOON WIND SENSORS

Equations of Motion

Let vy(z) be the vertical profile of horizontal winds which, for conven-
ience, is assumed to be planar and to remain fixed in space over the time

4




interval of interest. Let Vp and W, be the horizontal and vertical velocity
components of the sensor, which is here considered to be a rising or a falling
spherical balloon. The equations of motion for the sensor are obtained by
equating the external forces in the y-~ and the z-direction to the corresponding
inertis forces:

(Horizontal inertia force) = (y drag component)

meV, = -D (1a)

Vertical inertia force) = {Gravity force) + (z drag component) + (Buovant force
y ) \ S 34 Vi \ B

meWp = -W - D, + Fp (1v)

The present analysis is restricted to consideration of wind inputs having
wavelengths that are large relative to those associated with unsteady flow in the
balloon wake. With this restriction it appears valid to assume that the aerody-
namic force on the sensor is a pure drag-type force.

The various terms in equations (la) and (1b) are now considered in more
detail. The effective mass term comprises three parts:

me =m + my + mg (2)

where m 1is the structural mass of the body, my 1is the apparent mass of the
ambient air affected by motions of the body, and mg 1is the mass of the gas con-

tained within the body. Here it has been assumed that the balloon and its con-
tained gas move as a rigid body. For the special case of a spherical balloon
the apparent mass is (see ref. 9)

3
D (3)

e "3 Pfa’y

-

and the mass of the gas contained by the balloon is

Y
ng = Pg ﬂg' ()

When equations (3) and (4) are substituted into equation (2) the effective mass
can be expressed as

> P
W wpgD (1 g
Mg = = + —=—|= + =

€8 6 (2 Pg (5)
If an idealized condition is assumed wherein the pressure and temperature of the
contained gas is the same as that of the ambient air, the following values of
pg/ba are obtained:



For an air-filled balloon,

pg/ba = 1.0
For a helium-filled balloon,

pg/pa = 0.138
For a hydrogen-filled balloon,

pg/pa = 0.070

It should be noted that in the studies reported in references 6 and 10 the
contribution of mg +to the total mass was considered negligible. This assump-
tion is certainly Jjustifiable at the high altitudes of interest in reference 10
(above 100,000 feet). However, in the altitude range for which typical launch
vehicles experience maximum aerodynamic loads, this additional mass term is
indeed significant. For example, at an altitude of 25,000 feet the 2-meter bal-
loon considered in reference 6 has an apparent mass of 1,190 grams whereas the
mass of the balloon structure is only 360 grams.

Other terms appearing in equations (1) and (2) are

Buoyant force:

5
Fo = —&__ |1 . & 6
The y component of drag:
2 Vv - Vb
Dy = % paCDDE[(VW - Vb) + wbz] = (6b)

2
JE§W - Vb) + wb2

The =z component of drag:

Dy = * % paCDDE[(Vw - "b)2 + Wb%] d i (6¢)

(Vw - vb)2 + wb2

On the D, term a positive sign is for ascent and negative sign for descent.
With the forces as defined in equations 6, the equations of motion are
complicated by nonlinearities in vy and Wy, - If, however, it is assumed that
accelerations in the vertical direction are negligible (Wb ~ W t) and that the
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horizontal-velocity errors vy ~ vy, are small in relation to the terminal




velocity Wb, considerable simplification can be achieved. Thus equations (la)

and (1b) become, respectively,

meVy, * (% paCDDewb,t)vb = (% paCDDgwb,t)Vw(Z) (7)

and

[|hDg(, - fg\ l
\

Pa/ __&w
3Cp spCpD°

(8)

where the positive sign is used when the terminal velocity is upward and the
negative sign when it is downward.

Since the wind profile vw(z) is a function of altitude, it is convenient

to use an altitude increment rather than time as the independent varisble in
equation (7). Thus, with the substitution

av.
. =4z _b _ '
b “ 3t dz  "b,t'b (9)
equation (7) reduces to simply
1 1
vb' +Evb =iVW(Z) (lO)

where the coefficient L is a characteristic length defined as

8m

(S

L (11)

ﬂpapDD2

Interpretation of Balloon Response Equations

Physical significance of the parameter L.- Within the framework of the
approximations used herein the dynamic properties of the wind sensor are com-
pletely specified by the single parameter L. This parameter, which is analogous
to the time constant of a system, has some interesting and useful characteristics.
For purposes of illustration consider the vertical profile of horizontal wind
shown by the solid line in figure 1. The dashed line represents the horizontal
velocity component of a falling body as it traverses such a profile. At an alti-
tude 2y the body is disturbed from equilibrium by a wind shear

V. -V

0 1
A o= SALA . b _w’ sec™t (12)
20 = %




The solution of equation (10) indicates that after the body has traveled a

distance of about 3L beyond the disturbance, approximate steady-state equilib-
rium conditions are again established. The horizontal velocity of the body and
the wind velocity are then related as tollows: The velocity of the body at a
given altitude is the same as the wind velocity it encountered a distance L
prior to reaching that altitude, and the velocity error (the difference between
the wind velocity and the body velocity) is simply

- vy = AL (13)

where the sign on the right-hand side of equation (13) is positive for a rising
body and negative for a falling body. Note also that abrupt variations in a
profile, such as that indicated by the spike at altitude 2z; 1in figure 1, are

smoothed by the inertia of the sensor. Thus, the parameter L may be considered
a lag distance or memory length which related the instantaneous motion of the
body to its previously encountered wind inputs.

In a subsequent section of the paper a "desmoothing" procedure will be
illustrated whereby, if the lag length of the sensor is known, approximate

— Wind velocity

Balloon velocity

ML = velocity error

L = lag distance

Altitude

Velocity

Figure 1.- Illustration of some properties of the balloon lag-distance parameter L.




corrections can be applied to the smoothing errors in a balloon-measured wind
profile. It 1s therefore useful to express L 1in two alternate forms that
embody the terminal velocity, which is a readily measurable quantity, and either
pg or Cp. BEquations (5), (8), and (11) may be combined to eliminate either p,

or Cp. Thus, if it is assumed that Cp is known with more confidence than pg,,

it would be desirable to determine L from the relationship for the first alter-
nate form:

o 3\
W.
L=t 2D (for rising spheres)
g Cp \
[ (14)
we 5
L=--22%8,.2D (for falling spheres)
g Cp 9

If, on the other hand, Py is known with better confidence, the second alternate
form is used:

2
¥b,t
3

1+

L= o - 1

(15)

where p 1is a mass-ratio parameter defined as

g,

b= mg + n

Comparison of several balloon wind sensors.- Equation (15) is shown graph-
ically in figure 2(a) for rising spheres, and in figure 2(b) for falling spheres.
Points which represent some existing balloon wind sensors are also plotted in
figure 2 for an assumed altitude of 25,000 feet. The balloons considered are a
rawinsonde weather balloon, a chaff-type pilot balloon, a 2-meter Mylar sphere
(ref. 6), and a ROBIN falling sphere (ref. 11). The contained gas, which is
assumed to be at ambient pressure, is hydrogen for the rising balloons and air for
the falling balloons. The differences in performance between hydrogen-filled and
helium-filled rising balloons are relatively small for the cases treated. Other
pertinent physical properties for the balloons used in these calculations are
presented in table I.

Note that for the rising balloons considered, the lag distance varies from
a minimum of 10 feet for the chaff balloon to a maximum of 74 feet for the rawin-
sonde. The falling chaff balloon and the ROBIN have lag distances of 20 and
2L feet, respectively. As previously discussed, the wind-velocity errors asso-
ciated with these lag distances can be evaluated in terms of wind shear by means
of equation (13). These errors can be compared with the tracking errors of
existing FPS-16 radar, which are estimated in reference 7 to have a maximum root-
mean-square value of about 2.5 feet per second at altitudes where maximum winds
normally occur.
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TABLE I.- PHYSICAL PROPERTIES OF BALLOORS CONSIDERED IN FIGURE 2

[Altitude = 25,000 feet]

Weight w
Balloon type Di;‘:" b, t’ M ?1’;
1b gm ft/s_ec
Hydrogen-filled rising balloons:
2-meter balloon . « « « « « . . 6.57 lo.rr 3601 23.0 |2.300{15.0
Rawinsonde . . . . « « « o « & 7.50 |6.20}2,810| 15.0 |0.573 | T4.2
Chaff balloon . . « « « « « « & 3.90 |0.33 150| 15.3 {1.35 |10.1
Alr-filled falling balloons:
Chaff balloon . « o « o o o « &« 3.90 |0.33 150 | ~-10.6 [0.380 | 20.1"
Robin . . ¢ . v ¢ ¢ ¢ ¢ ¢ o o o 3.28 |0.25 115 | -11.% ]0.385 | 24k.4

Optimum size-weight relations.- In this section it will be shown that for a
balloon of given gross weight there is an optimum diameter for which the lag
distance of the balloon has a minimum value.

Substituting equation (5) into equation (11) gives

p .
cDL=ﬂ_+“_D(%+.5&) (16)
1pggD2 O a

Consider the variation of Cpl. for an expansible balloon as it inflates. Equa-
tion (16) indicates that for the small diameters which exist at the start of
inflation, the structural mass (given by the first term) predominates over the

sum of the apparent air mass and the mass of contained gas (given by the second
term), so that, for constant Cps L decreases with 1 D2. As the balloon

inflates further, however, the second term in equation (16) becomes predominant
and L then increases with D. The diameter for which L has & minimum, or
optimum, value for an assumed constant Cp can be determined by minimizing L

in equation (16) with respect to D and thereby obtalning

1
D il & (17)
P e (48
Pal3 Pa.
The L value associated with this optimum diameter i1s found to be
p
1+2 55
a
Lopt = —=—= Dot (18)
op Cp P
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The volume of an expansible balloon changes with altitude in such a manner
that paD5 remains constant. As can be seen from equation (17) this also happens

to be the manner in which the optimum diameter of a balloon varies with altitude.
Thus, if the diameter of an expansible balloon is optimum at one altitude it will
automatically change with altitude so as to remain optimum at all other altitudes
for which Cp remains constant. In contrast, a fixed-diameter balloon, such as

the 2-meter spherical balloon of reference 6, satisfies the optimum size-weight
relations at only one altitude.

The variation of the gquantity CpL with diameter for various balloon weights
(eq. (16)) is shown in figure 3(a) for rising spheres and in figure 3(b) for

20 /
16
/ W =8 1b s
P —————
L
,l

12
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1
e
5 4// ”’,A::;;’
25 4://

Dismeter, ft

P
€ - 0.138.

(a) Rising sphere. —
Pa

Figure 3.- The lag-distance parameter as a function of the welght and diameter of spherical bodies
at an altitude of 25,000 feet.
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falling spheres. It is assumed that the rising balloons contain helium
( Pg/Pa = 0.158) and the falling balloons contain air ( Pg /pa = 1.0). The air

density considered is Py = 0.00109 slug/cubic foot, which corresponds to an

altitude of 25,000 feet. The locus of optimum diameters is also shown in fig-
ures 3(a) and 3(b) by the dashed line that passes through the minimum point on
each curve (see eq. (17)). The straight line along which the curves in fig-
ure 3(a) terminate represents the limiting condition of zero rate of climb for
balloons at an altitude of 25,000 feet. This result is obtained by setting
Wb,t equal to O in equation (lh), which gives CpL = 2D. A point worth noting

in figure 3 is that when the diameter of a balloon is large - large relative to

its optimum value - the performance gains that can be realized by a reduction in

structural weight become relatively insignificant.

\
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Figure 3.- Concluded.
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Relation between L and a running-average distance.- In analytical inves- j
tigations of vehicle response to detailled wind profiles measured by the smoke-
trail technique, equivalent balloon-measured profiles have been simulated by
smoothing the smoke-trail-measured profiles (see, for example, refs. 5 and 8).
The smoothing technique often employed consists of simply averaging the veloc-
ities of the detailed profile over an interval extending an equal distance on
each side of the altitude in question. It is of interest to determine the rela-
tion between this so-called "running average" length and the parameter L. An
approximate equivalence between the lag length L and a running-average length 1 |
is found in the appendix to be

1=~ 3.46L (19)

Thus, if tracking and data readout errors were not present, the equivalent
running-sverage length for the rawinsonde balloon considered in table I would be
approximately 1 = 3.46 X Th.2 or 258 feet as contrasted with the 2,000 feet
used in reference 8 to simulate the overall smoothing characteristics of the
GMD-1 wind data.

Response of Falling Spheres to a Simulated Wind Profile

Anglog-computer results.- For further insight into the wind-following char-
acteristics of falling spheres, equations (1) have been solved on an analog
computer by using a synthetic wind-profile input. In the simulation of this
problem the buoyant force Fp was assumed to be zero, and the y and 2z com-
ponents of drag were used in the nonlinear form given by equations (6). A con-
stant drag coefficient of 0.1 was used in the analysis. This value may be con- |
sidered a representative Cp for smooth spheres at Reynolds numbers above the ‘
critical value, which may vary from 2 X 105 to 5 x 100, Atmospheric density in
the altitude range considered (20,000 to 30,000 feet) was assumed to vary
according to the relation

-2/22,000

pg = 0.0034z slug/cu ft (20)

where the altitude 2z is given in feet. The simulated wind profile through
which the spheres are "dropped" had variations in wind shear ranging from

AN =0 to A =0.10 sec™l, as shown in figure L.

In figure 4(a) the diameter of & 1.00-pound sphere is varied and in fig-
ure 4(b) the weight is varied for a 6-foot-diameter sphere. 1In both cases the
bodies were assumed to be released from rest at an altitude of 30,000 feet. Fig-
ure 3(b) shows that the optimum diameter of a 1.00-pound falling sphere is approx-
imately 4 feet. This fact is also evident in figure 4(a), where it can be seen
that the L-foot-diameter body follows the input more closely than either the
2- or the 8-foot-dismeter body. Furthermore, the severe degradation in the
velocity-tracking capability of a 1.00-pound sphere that is seen to occur in
figure U(a) when the diameter is reduced from 2 feet to 1 foot is also evidenced
in figure B(b) by the manner in which CDL abruptly increases in this diameter

1k
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(a) Welght = 1.00 pound.

solutions of the response of falling spheres to a simulated wind profile.
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range. For the 6-foot-diameter sphere in figure 4(b) the difference between the
responses of the 1.00-pound and the 0.25-pound sphere is indeed small. This fact
confirms a previously mentioned point regarding the relatively insignificant
gains that can be achieved through weight reductions when the balloon diameter

is greater than an optimum value.

An approximate "desmoothing" procedure.- As illustrated by the plots in
figure 4, the balloon response lags behind the wind-profile input and tends to
smooth its detailed features. A possible method for correcting a measured wind
profile for balloon-smoothing errors will now be considered. The basic assump-
tion made is that the wind profile can be approximated by a series of straight-
line segments of length 3L or greater. Application of the procedure for the
case of the 1.00-pound 2-foot-diameter falling sphere of figure 4(a) is illus-
trated in figure 5. With reference to figure 5 the "desmoothing" procedure may
be described as follows:

1. From equation (14) or (15) determine the variation of I with altitude.
(See right-hand side of fig. 5.)

2. Represent the balloon velocity-response curve (A) with a series of
straight-line segments. The altitude interval covered by each segment should be
at least 3L, where L 1is the average balloon lag distance for that altitude
interval.

3. Shift the straight-line segments (B) vertically a distance L in a
direction opposite that traveled by the balloon. For the case of figure 5, a
falling sphere, the curve is shifted upward. This curve (C) represents the
corrected or "desmoothed" profile.

Comparison of the wind profile corrected for smoothing errors - curve C -
with the true wind profile used as an input - curve D - shows that the agreement
between the profiles is good everywhere except in the region of highest wind

shear (A = #0.10 sec~l; see fig. 4). In this region the two profiles differ
because the wind shear changed before steady-state response conditions were
established by the balloon, that is, before it traveled a distance 3L. Note
that the desmoothed profile always indicates a triangular peak in the wind pro-
file regardless of the actual shape of the peak.

It should be mentioned that at very high altitudes, falling bodies, such as
ROBIN spheres (ref. 11), will have much larger L values than those considered

here. Consequently, the steady-state response conditions required in the pro-
cedure may often not be obtained at these altitudes.

RESPONSE OF FLEXIBLE LAUNCH VEHICLES TO WIND PROFILES

Simplifying Assumptions

Previous sections of the paper have concerned the wind-tracking capabilities
of a wind sensor with little consideration given to the accuracy requirements

17
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Balloon velocity response

"Desmoothed'" profile obtained by shifting
upward a distance L
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Figure 5.- Illustration of an approximate method of "desmoothing" a balloon-smoothed wind profile.
Falling sphere; D = 2 feet; W = 1.00 pound.
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in applying these measurements to launch-vehicle response problems. An attempt
will now be made to interpret wind-measurement errors in terms of the vehicle
response errors that will result when the smoothed wind profile instead of the
detailed profile is used as the forcing function. Since the principal differ-
ences in response of a vehicle to these two forcing functions will occur in the
elastic modes, only elastic modes will be considered herein. Furthermore, to
avoid complications which would tend to obscure the basic results being sought,
the following simplifying assumptions have been introduced:

1. The vehicle response is represented by a single-degree-of-freedom,
constant-coefficient system.

2. The wind sensor and the vehicle are assumed to experience the same wind
profile.

3. For the case of random wind inputs, the profile is treated as a sta-
tionary random process over the altitude interval of interest.
Equations of Motion

Response in the elastic modes of the vehicle can be expressed as
y(x,t) = a;(t)@(x) + as(t)Po(x) + . . . (21)

where y(x,t) is the total bending deflection at a station x at time t;
an(t) is the contribution of mode n to the response at a reference station on

the body; and @,(x) is the normalized shape of the nth natural mode. The
coefficients ap satisfy the following set of differential equations:

. . vy(t)P
8p + 2Lnndn + ayey = ———Wb(,ln) n (22)
where for each mode n
L 2
My generalized mass, ‘/P m(x)@,"(x)dx
0
m natural vibration frequency of the mode
§n equivalent viscous damping of the structure relative to critical
damping
Py generalized force per unit vw(t) due to an aerodynamic load dis-

tribution p(x) along the vehicle (aerodynamic damping and stiff-

L
ness effects have been neglected), b/\ p(x)Pn(x)ax
0
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It is sgain convenient to express time in terms of the vertical distance
traveled. Thus with

z

= (23)
where Vg 1s the average velocity of the vehicle over the time interval of
interest, equation (22) becomes

P
ap" + 20 Qpan' + anan = g v(2z) (24)
VM

where Qp =wp/Vy 1s the natural frequency in radians per unit length of dis-

tance traveled. It can be seen that the response in each mode is that of a
damped spring-mass oscillator excited by a forecing function vy(z).

If instead of using the true profile vw(z) as a forcing function, the
profile vb(z) measured by a wind sensor is applied, the differences in vehicle

response in the two cases will represent the errors due to smoothing effects.
The problem can be illustrated by the transfer-function block diasgrams shown
in figure 6. As indicated in the figure, the horizontal velocity of the wind

Detailed profile Smoothed profile Vehicle response
Vy ///A\\\ Yo ‘///‘\\\\\\ 8n //\\\u//"\\\
Vehicle 2

A Balloon z transfer

transfer function,
> function, > K >

1 n
1+ Ls s< + 2040ns n

Figure 6.- Block diagram showing vehicle response to a balloon-measured wind profile.

sensor vb(z) is related to the wind profile vw(z) through the transfer func-
tion obtained by teking the Laplace transform of equation (10):

)
) = (25)
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The response of the vehicle is in turn related to the measured wind input through
the transfer function obtained by taking the Laplace transform of equation (24)
and substituting vy for wvy:

an(s) Ky (26)
vp(s) ~ 52 4 2t Qs + Q2
n’‘n n
where s 1s the Laplace operator and
P
Kn 2 (27)
VzMp
Thus, the vehicle response and the unfiltered wind profile arc rclated as
follows:
ay(s) _ an(s) v (s) _ K, (28)
vals) — vpls) v (s) (1 + Ls)(s2 +20 Qs + Qne)

By way of illustration, the response errors associated with the filtering
properties of the wind sensor are considered next for two specific assumed forms
of the wind profile - a discrete gust and a stationary random process.

Vehicle Response to a Discrete Gust

Assume the shape of vw(z) to be an isosceles triangle having a peak

velocity of v p.. and an altitude increment b, "tuned" to give maximum
J

dynamic amplification in the natural mode of interest; this occurs when the gust
duration is approximately 0.8 times the wave length of the mode in question
(ref. 12):

b = 0.8 %r_fl (29)

From the inverse Laplace transform of equation (25), the velocity response
of the wind sensor to the triangular gust under consideration is plotted in
figure 7 for various values of the ratio L/b. Note that for L/b = O the
sensor velocity and the input velocity are identical, whereas at L/b = 0.2 the
indicated peak velocity is approximately three-fourths that of the input peak
veloecity.

The transient response of the vehicle to these "measured" gust profiles
was obtained from solutions of equation (28) and is shown in figure 8. A con-
dition of zero damping (Cn = O) was assumed in the calculations. Also, for
convenience, the response time histories are normalized with respect to the
static response (agy = Kn/an) and the distance traveled is expressed in gust

lengths.
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The point of chief interest in figure 8 is the reduction in the calculated
maximum response of the vehicle which comes from using a filtered wind input.
Therefore, in figure 9 the maximum response, as a fraction of the unfiltered
maximum, is shown plotted against L/b{ An alternate and perhaps more signif-
icant nondimensional parameter which is related to L/b through equation (29)
can be written

wpl L
ﬁ = 1.611.' E (50)

This parameter is also indicated on the abcissa of the figure. Note that
wny/VZ uniquely relates the response errors due to smoothing to the three key

variables of the problem, which are: L, the lag distance of the wind sensor;
wn, the natural frequency of the vehicle; and Vg, the velocity of the vehicle.

Vehicle Response to & Continuous Random Wind Input

Assume that the fine-grain structure of a wind profile can be represented
as a stationary random process having a power spectrum QVW(Q). The power

1.0 l

R\ IaN

.6 *

w,max

|
\ 9 \\* \<

7 \
el |

z/b

Figure 7.- Balloon response to triangular-shaped discrete gust.
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spectrum of the vehicle response in the nth elastic mode 1s related to the power
spectrum of the wind proflle as follows:

2
2a,(0) = |Ey()] oy (2) (31)

where Hy(f) is the vehicle frequency-response function which can be derived
from the Laplace transform of equation (24) by the substitution of s = iQ. Now

1.4

1.2 | /// \ N

LA
- Ly

’ [VAA L

,,—~f/”;;?i”;”’/’,i7x—’/’
]

. /
V4%l 1
P

Y .2 4 .6 .8 1.0 1.2 1.4 1.6

z/o

Figure 8.- Vehicle elastic-mode response to the "measured" gust in figure 7.
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l

instead of the true wind profile as an input, consider the input as being a
balloon-smoothed profile. The power spectrum of the smoothed profile 1is

vy, (0) = |Hb(ﬂ)|2¢vw(n) (32)

1.0
.8 \\
\\
.6 \\
N
8 smoothed \\
®detailed \ |
4 — |
.2
0 .2 4 .6 .8 1.0
L/b
l | | | | |
0 1 2 3 4 5
an
vz

Figure 9.~ Effects of balloon smoothing on the maximum elastic-mode response of a vehicle to a
balloon-measured discrete gust input.
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where H (Q), the frequency response of the wind sensor, comes from equa-
tion (25) with s = iQ. Hence, the power spectrum of an elastic-mode response
to a smoothed wind profile becomes

0a,(9) = |Ey(0) lelﬂb(n) ,2<I>vw(9) (33)

The mean square of the response 1s related to the power spectrum of the
response by the expression

-
an jo g, (2)40

j:o,va) |° [mol0) "oy, (2)as (34)

The elastic modes of a launch vehicle, being lightly damped, have frequency-
response functions which are sharply peaked in the viecinity of the natural fre-
quencies. Thus, for a random input whose frequency content is distributed in
a continuous gradually changing manner, the response is governed primarily by

- the level of the input at the natural frequency of the mode in question. The
mean-square response based on a smoothed input profile (eq. (34)) can therefore
be written approximately as

o2 ~ le(Qn)l 2‘1’vw(9n) /; lev(n)lgdn (35)

wherein it can be seen that the functions Hb(Qn) and °Vw(9n) have been

evaluated at the natural frequency ¢, and removed from under the integral

sign. Since the mean-square response based on an unsmoothed profile is obtained
‘by letting L equal O in equation (35) to give Hp(0) = 1.0, the ratio of the

smoothed to the unsmoothed mean-square response becomes

(=2) it
smoothed _ Hb( ) (36)

(a2) 'z
80" /detalled

or in terms of root-mean-square response, the ratio is simply the amplitude of
the frequency-response function for the sensor:

——5)

(u ®n"/smoothed - Hscfgg)
— V

(V=2) i

detailed

(37)
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This ratio, plotted in figure 10, represents the factor by which the predicted
root-mean-square response would be attenuated by use of the balloon-smoothed
profile in place of the detailed profile as an input. A comparison of the
response-attenuation factors given by figure 9 for the triangular gust and by
figure 10 for the continuous random profile indicates that smoothing effects
are more pronounced for the case of random inputs.

As a specific example, wind profiles measured with the 2-meter spherical
balloon of reference 6 will be used as the input in an evaluation of the response
attenuation factors for a launch vehicle. Assume that at an altitude of
25,000 feet the vehicle has a vertical velocity Vg of 1,000 feet per second

and a fundamental natural bending frequency w of 30 radians per second. With

1.0

%)
( 8" /smoothed \\\
( °n2 )detailed \\\

.2 =

0 1 2 3 4 5
wnL
Vz

Figure 10.- Effects of balloon smoothing on the root-mean-square elastic-mode response of a vehicle
to a balloon-measured continuous random wind input.
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a balloon lag distance of 15 feet at this altitude (see table I) the nondimen-

sional frequency parameter becomes Lo = 15 x-—ég—— = 0.45. Thus, the response
Vg, 1,000

attenuation due to balloon inertia is found to be 0.95 for the case of a "tuned"

triangular gust (fig. 9) as compared with 0.91 for the random wind input

(fig. 10).

CONCLUDING REMARKS

An analytical evaluation is made of the capabilities of balloon wind
sensors to respond to the detailed variations in the wind structure which can
represent important load inputs for flexible launch vehicles. Both rising and
falling spherical balloons are considered. It is found that for a balloon of
given weight there is an optimum diameter for which the balloon response veloc-
ity is most sensitive to variations in the profile of horizontal winds. When
the diameter of the balloon is larger than this optimum value the advantages of
reducing the balloon weight to improve its dynamic response become relatively
insignificant. The apparent mass of ambient air surrounding the balloon, which
has often been neglected in previous investigations, is found to be of consider-
able importance at lower altitudes where launch vehicles often encounter maximum
aerodynamic loads.

An epproximate "desmoothing" procedure is developed which, under certain
conditions, can be used to correct measured wind profiles for smoothing errors
assoclated with inertia of the balloon wind sensor. Finally, an assessment is
made of the reduction in the calculated elastic mode response of launch vehicles
that results when the fine-grain structure of a wind input is smoothed by bal-
loon inertia. These errors are evaluated for continuous random and triangular-
shaped discrete gust inputs.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., April 18, 1963.
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APPERDIX

RELATION BETWEEN LAG LENGTH OF A WIND SENSOR

AND A RUNNING-AVERAGE LENGTH

Assume the wind profile vw(z) to be averasged over a distance that extends

1/2 on each side of the altitude 2z. This running-average operation produces
a smoothed profile defined as

z+l

— 1 2
v, (2) =7 . v (z)dz (A1)

A

2

With an input v(z) and an output ¥V, (z) a transfer function for the

averaging operation can be determined from the ratio of the Laplace transforms
of Wy(z) and vy(z). The Laplace transform of v _(z) is

Vi (s) = L v (z)e5%dz (A2)

Introduction of a dummy variable of integration 1 and substitution of eque-
tion (Al) into equation (A2) gives

[> ] T]+l
2 ~-8%Z
/ ) vy(n)e  "dn dz (A3)
oJ 173

The integration of equation (A3) with respect to 2z produces

e~ |

vyls) =

st s
— 2 _ 2 co -5
Vi (s) =e__6_f vy(n)e ndn
sl 0
81 _81
e - e °
= —— vy(s) (A%)
sl

Thus, the transfer funection of the running-average operstion becomes
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s s
W(s) _ 62 - e 2
Vw(S) sl

(A5)

With the substitution of iQ for s 1in equation (A5), the frequency-response
relation is obtained (also see appendix of ref. 13):

v(2) sin %z'-

- 2 (46)
vAa) o ay/e
Similarly, by substitution of 1Q for s 1in equation (25) the frequency-
response amplitude function for the wind sensor is found to be
vp(Q)
b 1
= (A7)

Note that equations (A6) and (A7) are identical only at 1 =0 and L = O;
however, an approximate equivalence between the 1 in equation (A6) and the L
in equation (A7) can be established by expanding the two equations into a power
series about 1 =0 and L = 0 and equating the first-order terms of each
expansion. Thus, a first-order approximation to equation (A6) is

Vv
o1 - L1292 A8
Vw 24 L (48)

and a first-order approximation to equation (A7) is

v, (0) 1 .22
Vw(ﬂ) ~]1 - 3 LeQ (A9)

Equating equations (A8) and (A9) gives the following relation between the running-
average distance and the lag distance:

1~ {12L

~ 3,.46L (A10)
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